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ions inside the polyion or the effective charge is in­
troduced. Therefore, the site-binding model, as 
proposed by Harris and Rice, may be the proper 
model for explaining the behavior of linear poly-
electrolyte solutions. 

The theory of the solvent isotope effect for water-
deuterium oxide mixtures which was developed 
some time ago by Gross, Butler and their co­
workers2-7 permits a prediction of the variation 
with solvent deuterium content both of ionization 
constants of weak acids and of rate coefficients of 
acid-catalyzed reactions which involve a pre-
equilibrium proton transfer. Recently Purlee8 has 
re-examined and up-dated this theory, especially 
in its parametric aspects. He introduced the now 
firmly established value of K = 4.0 for the equi­
librium 

H2O + D2O = 2HDO (1) 

and also arrived at a new value of L = 11 for a second 
needed equilibrium constant, that for the exchange 
reaction 

2D3O
+ + 3H2O = 2H3O

+ + 3D2O (2) 
Purlee then utilized several sets of experimental 
data, both kinetic and equilibrium, to arrive at rele­
vant values for a function Q'(n) (see equation 3). 
To do this last he established best values for a pair of 
parameters, ki+n and ks+n, which enter in this func­
tion. However, Purlee also showed that the rule of 
the geometric mean9 would have sufficed to establish 
these latter and that in this sense Q'(n) is really 
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only a function of the constant L and the atom frac­
tion M of deuterium in the solvent. Purlee then 
gave a detailed comparison of the fit of the up­
dated theory with the available data. Among 
other points he noted that the theory fails to agree 
with the experimental work for some well known 
acid catalyzed reactions, among them the muta-
rotation of glucose and the hydrolysis of methyl 
acetate. 

Still more recently Gold10 has given further 
consideration to the Gross-Butler theory. He 
notes that the function Q'{n) which appears to be 
rather complex in the Nelson and Butler formula­
tion reduces, with the assumption of the rule of the 
geometric mean, to 

Q'(n) = (1 - n + nl)> (3) 
where for this case I = L ~l/: The resulting ex­
pressions for relative rates and ionization constants 
are 
kn _ 1 — n + nl^ky/kB.) _ 1 — w + nL-'/ijkn/kg) 
ks~ (1 - n + nl)> ~ Q'(n) 

(4) 
and 

Kn _ 1 - n + nl (.KMZKT1) 

K1, (1 - n + nl)1 { ' 
where k refers to rate coefficients, K to ionization 
constants and the subscripts H, D and n to the 
solvents water, deuterium oxide and a mixed 
aqueous solvent with the atom fraction n of deu­
terium. 

One point made by Gold was that the calculated 
values of kn/kn or K-RjKn are rather insensitive 
to the value of L and he tabulates data to illustrate 

(10) V. Gold, Trans. Faraday Soc, 56, 255 (1960). 
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The dependence of the relative ionization constant of a weak acid on the atom fraction n of deuterium in a mixed deuterium 
oxide-water solvent is treated from a general point of view, with particular consideration of medium effects caused by the 
change in solvent. Various limiting formulations for comparison with experiment can be derived from the general equa­
tions, depending on the particular simplifying assumptions that are made. The Gross-Butler formulation, characterized 
by a cubic term in the denominator, results from assuming monohydrated protons and deuterons and additionally ignoring 
all medium effects, i.e., neglecting free energies of transfer of the relevant species from one medium to another. A "linear" 
formulation (with a first order term in the denominator) results if one postulates non-specific solvation for the protons and 
deuterons and again neglects free energy of transfer. Finally a "medium effect" formulation can be derived by assuming 
that the entire effect is due to free energy of transfer, i.e., that exchange fractionation is negligible. Comparison of these 
limiting formulations with experimental data for both ionization constants and rate coefficients of acid catalyzed reactions 
reveals that quite respectable fits may be obtained with each of them. However, for reactions that have KH/KT> or kx>/ks 
values close to unity the Gross-Butler formulation fits considerably less well than the other two. Since the most likely actual 
situation is some superposition of contributions from medium effects and exchange fractionation, it seems highly doubtful 
that acid-base studies in mixed solvents will permit unambiguous conclusions about the state of solvation of the protons. 
Furthermore, in view of the likelihood that medium effects are of consequence, it is doubtful whether rate studies in the 
mixed solvents will permit choices to be made among kinetic mechanisms, a conclusion which was recently also reached by 
Gold from a different line of reasoning. 
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Fig. 1/—Comparison of predictions for Gross-Butler and 

"linear" formulations [equations 5 and 7] using best value 

parameters for each. 

this. A second, rather different point made by 
him concerns the origin of and evidence for the 
cubic formulation for Q'(n). Gold notes, fol­
lowing Gross,3 that the cubic dependence is a 
direct consequence of the use of the formula H3O

 + 

for the proton in solution and in particular of the 
assumption that the three protons are equivalent. 
If, alternatively, one makes no specification of the 
solvation of the proton and writes for equation 2 
the less specific equation 

2D+
(soiv) + H2O = 2H+ ( so lv ) + D2O (6) 

the resulting expression for Q'(n) is 
Q'(n) = 1 - n + nP (J) 

Gold concludes that the comparisons of Purlee 
suffice to show that the linear formulation [equa­
tion 7] for Q'n does not represent the data and 
that the cubic form is essential. This, in Gold's 
view, is evidence that the proton is indeed mono-
hydrated in solution and that no further solvation 
is of any structural significance. 

For three different reasons these last conclu­
sions seem suspect to us. One is that the Gross-
Butler development is given in thermodynamic 
terms and generally, in a thermodynamic discus­
sion of dilute solutions, it is unnecessary to give 
consideration to the details of the ion solvation, 
i.e., for such purposes the formula H + , for unspeci­
fied solvation, is fully as useful as H3O+. A 
rather different reason is that the cubic formula­
tion for Q'(w) leads to predictions which seem 
intuitively to us to be rather unlikely. Hence, 
it seems of importance to be sure that the experi­
mental data do, indeed, necessitate use of a cubic 
Q'(«). This last is illustrated by a comparison of 
Figs. Ia and lb, which summarize the predictions 
from a cubic and a linear Q'(w). Qualitatively it is 
clear that the predictions are similar for large 
values of the K-B/K-D ratio but very different for 
values near unity, so different that one would 
expect rather ordinary experiments to distinguish 
between them. We shall show later that there is 
no evidence to support the belief that the cubic 
Q'(w) is superior; and that in fact if one were 
forced to choose between equations with a cubic 
and a linear denominator, one would probably 
choose the latter. However, a third quite dif­

ferent point leads us to believe that the problem 
is actually more complex than implied by a simple 
choice between these two theories. The usual 
development of the Gross-Butler theory refers 
the activity coefficients of all the solutes to "in­
finitely dilute solution" as standard state without 
regard for the fact that, as the solvent composition 
changes from pure H2O to pure D2O, this standard 
state is continually shifting. We believe that 
this disregard is not legitimate and that the 
standard state problem must be given explicit 
attention. 

Kingerley and LaMer11 pointed up this last 
problem by noting that most deuterium exchange 
studies can actually be shown to involve two 
different types of process, an exchange reaction 
for a constant solvent and a transfer reaction 
which carries the exchanging species from one 
solvent to another. They therefore proposed 
a separation of the total free energy into a free 
energy of exchange and a free energy of transfer 
and went on to show that experimental values 
can be obtained for the separate terms and that 
the free energy of transfer is usually a substantial 
term. This term is, of course, the one which is 
being neglected if no consideration is given to the 
changes in standard state. Kingerley and LaMer 
went still farther and concluded both from their 
own studies and from those of Brodsky12 that the 
free energy for exchange is generally close to zero 
(exchange factor of close to unity) so that the 
free energy of transfer term is often the dominant 
one. 

Swain and co-workers13 have very recently 
also discussed the problem of the solvent isotope 
effect. Their approach involves detailed con­
sideration of the structure of water and the relation 
of this to solvation, to activity coefficients of ions 
in solution, etc. Since we believe that the particu­
lar problem of acid-base equilibrium can be use­
fully discussed from a more general standpoint, 
we shall not at this time give consideration to this 
structure-oriented approach. 

In the next section we shall give general equa­
tions for the deuterium solvent isotope effect for 
aqueous solutions and explore the various limiting 
expressions, emphasizing the assumptions which 
lead to them. Finally we shall compare the various 
expressions with experimental data.14 

Formulation of Equations.—The acid dissociation 
constant for a weak acid, HA, in water can be ex­
pressed in either of the forms 

or 
KS = 5 a ^ - (9) 

OHAOHsO 

These expressions are equivalent by virtue of the 
conventional relationship defining an* and OH1O

 + 

(11) R. W. Kingerley and V. K. LaMer, T H I S JOURNAL, 63, 3256 
(1941). 

(12) A. E. Brodsky, Trans. Faraday Soc, 33, 1180 (1937). 
(13) C. G. Swain, R. F. W. Bader and E. R. Thornton, Tetrahe­

dron, 10, 182 and 200 (1960). See also C. G. Swain, A. D. Ketley and 
R. F. W. Bader, T H I S JOURNAL, 81, 2353 (1959). 

(14) To save space we shall restrict our development to ionization 
of weak acids. The extension to rate coefficients of acid and base 
catalyzed reactions is obvious from the developments of earlier workers. 
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in terms of each other, dao* = &H+ #H2O- The 
standard state for each solute is a hypothetical ideal 
dilute solution containing one mole of solute per 
liter of solvent. The standard state for the sol­
vent is pure H2O, and following normal practice 
we shall give solvent concentrations in mole 
fraction units. Therefore for sufficiently dilute 
solutions in H2O 

Kn = 
CH+CA" 

or Kn = 
CH8O+CA-

CHA 
(10) 

where the mole fraction term xHao, in the second 
denominator is omitted because its value is unity. 
These two equations differ merely in the symbol 
used to denote the solvated proton. 

Exactly similar considerations apply to the 
dissociation of DA in the solvent D2O 

Kn = • 

or 
Ko = QDlO+SA-

ODAdDsO 

(H ) 

(12) 

where by convention, <ZD>O+ = OD+^D1O- The 
standard state for each solute is now a hypothetical 
ideal dilute solution containing one mole of solute 
per liter of D2O. For sufficiently dilute solutions 
in D2O 

„ C D + C A - V C D 8 O + C A -
A D = — or A D = 

CDA CDA 
(13) 

where again the two equations differ merely in 
the symbol used to denote the solvated deuteron. 
Without further consideration of the difference in 
standard states, it cannot be assumed that -STH 
and KT, retain their pure solvent values for the 
case of ideal dilute solution in a mixed solvent of 
H2O and D2O. 

For a mixed solvent (atom fraction n of deu­
terium) the operationally meaningful dissociation 
constant is that for the over-all dissociation of the 
combined isotopic acids, HA and DA. For 
sufficiently dilute solutions 

(CH+ + CD+)CA-
Kn = 

(CH A + CDA) 
(14) 

If solvation of protons and deuterons is taken into 
account explicitly by assuming that just one 
solvent molecule is involved this relationship 
takes the completely equivalent form 

„ _ ( C H I O + + CH2DQ + + CHP 8 O + + C D 8 O + ) C A - , . . , 

( C H A + CDA)(XHS0 + XHDO + XDJO) 

We are here using the convention 

OH + + S D + = 
Sa11H8O+" 
Za"n,o" 

(16) 

where the sums are taken over all relevant isotopic 
species corresponding to the assumed degree of 
solvation.15 The standard state for each solute 

(15) This convention is necessary in order that equations 14 and 15 
be equivalent. I t is not the same, however, as the convention em­
ployed by Gross or Butler or Purlee, all of whom adopted, even for the 
mixed solvents: an* = aH80

+/<»HsO and OD+ = UD80
+/<iDsO »'.«., the same 

definitions as are employed for the pure media H2O and D2O, thus 
ignoring the difference in standard state. Moreover, when OH+ and 
CD+ are denned in this latter way, their sum does not in general reduce 
to the sum of the concentrations of the acid cations in dilute solution in 
the mixed solvent. Therefore, concentration equilibrium expressions 
derived in terms of them will contain activity coefficients of obscure 
significance (see e.g., footnote 13, page 210 of ref. 14a). 

is a hypothetical ideal dilute solution containing 
one mole of solute per liter of mixed solvent. The 
standard state for each solvent species is the 
respective pure solvent (hypothetical in the case 
of HDO). Equations exactly equivalent to (15) 
could be written in terms of other assumed degrees 
of solvation (more than one solvent molecule per 
cation) provided that the appropriate convention 
corresponding with eq. 16 is introduced. 

Let us now introduce auxiliary, hypothetical 
dissociation "constants" for the two isotopic 
acids defined for the mixed solvent medium. These 
may be defined for ideal dilute solutions in two 
non-equivalent ways, where the symbol Kn(n) 
etc., is used to indicate that the constant is for the 
solvent containing atom fraction n of deuterium 

CD + CA- ( 1 ? ) 
A"H(II) = —y; a n d A"D(B) 

CHA CDA 

or 
K>, CH8O+CA- , „ , CD8O

+ CA-
— ana A DU) — (18) 
CHAKH2O CDAXDJO 

If we now introduce the value of K = 4 for eq. 
1 (which is equivalent to assuming the rule of 
the geometric mean for the solvent water), we 
can conveniently rewrite eq. 18 as 

K'B 
C H 8 O + C A -

C H A ( 1 - » ) 2 and K'ma) 
CD 8 O + CA 

C D A « 2 (19) 

Equation 17 represents equilibrium among the 
same species as in eq. 8 and 11, whereas eq. 18 and 
19 represent equilibrium among the same species 
as in eq. 9 and 12. Thus -RT In (KH^/KK) 
or -RT In {K'-BHat/K-a) measures the respective 
free energies of transfer from pure H2O to the 
mixed solvent and — RT In {K-D^/K-D) or — RT 
In (K'r>(n)/Kv) measures the respective free ener­
gies of transfer (for the deuterated species) from 
pure D2O to the mixed solvent. The difference 
between eq. 17 and 19 is that the latter equations 
imply specific solvation with single monomeric 
water molecules. They differentiate in principle 
among such processes as 

H2O(M) + H A ( M ) = HsO+(re) + A- (M) 

H D O ( M ) + HA(M) = H2DO+(M) + A - ( M ) 

and the like, treating the ions, H3O+, H2DO+, 
HD2O+, D3O+ as thermodynamically well 
defined species. Equation 17 on the other hand, 
implies ignorance with regard to the structure of 
liquid water and the solvated cations. This view 
neglects local isotopic fluctuations in the composition 
of the solvation shell, assuming that on the average 
they will be smoothed out. In effect, it ascribes 
a mean base strength to the mixed solvent (for 
given n) and mean acid strengths to protons and 
deuterons, respectively, solvated by it. The values 
of the K' constants will not in general be the same 
as those for the analogous K constants, since 
the former involve a specific hydration of the 
cation and degree of polymerization of the water 
(which is assumed to be monomeric in equations 
18 and 19).16 

(16) If one were to assume a more general model, in which the de­
gree of polymerization of the water is q and the proton is p-io\6. hy-
drated (say p = 4, as suggested, see e.g., E. Wicke, M. Eigen and Th. 
Ackermann, Z. Phys. Chem., 1, 340 (1954), equation 15 would be re-
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For further discussion it is convenient to define 
some additional symbols. Let a be the isotopic 
abundance of deuterium in the HA species and let 
0 be the isotopic abundance of deuterium in the 
cationic species, i.e. in H + or H3O+ etc. In con­
trast to a and to the earlier defined n, the value 
of (3 will depend on the model chosen for the acid 
cation, i.e., on the number of equivalent exchange­
able hydrogens. Let <p be the isotopic fractiona­
tion factor between weak acid and water, defined 
ip = a(l — n)n(l — a). For a monobasic acid HA 
this is CDA(1 — n)/nCnA. Let 6 be the fractionation 
factor between water and the acid cation. Assum­
ing non-specific hydration, this gives e = /3(1 — n)/n-
(1 — /3) = C D + ( I — n)/Cn*n. For the specific case 
of three equivalent protons and assuming the rule 
of the geometric mean for these acid species 

* w ( l - / 3 ) \ CB1O+J n 

Using these definitions, we can develop expressions 
relating ionization constants in the pure solvents 
and in the mixtures. For the case of unspecified 
solvation 

Kn(U) _ 1 — /3 _ 1 — n + n<p 
K„ I — a 1 — K + ne 

But since 
K-S(O) (1 — p)a _ . 

(20) 

-K-DfI /S(I *) 
we obtain 

Kno 
Kn 

1 - n + ne (Knw/Kixu)) 

(21) 

(22) 
1 — n + ne 

Similar manipulation of the equations for the case 
of specifically monohydrated protons and deuterons 
yields 

K ' H W 1 - n + ne'KK'Bw/K'^u)) , „„ , 
Ku = (1 - n + ne'Y ( ' 

The relation of Kn, the observed ionization 
constant in H2O, to Ku assumes the forms, for 
unspecified solvation and monohydration, respec­
tively 

Kn = Kn 1 — n + ne(Kn(u) / K-p(n)) 
Kn Kn(u) 1 — M H- we 

(24) 

Kn 
Ku 

Kn 1 - n + n^(K'K(n)/(K'mu)) (25) 
K'n(u) (1 - » + ««')« 

These equations are formally similar to those of 
earlier workers [see for example Gold's10 equations 
7 and 8], but it should be emphasized that at this 
stage, the quantities Kn^n), KDW, e, etc. are not 
necessarily independent of n. More significantly, 
these quantities are not presently accessible to 
measurement so that to obtain equations which 
involve measurable quantities we are forced to 
make assumptions. We wish now to show that 
different sets of plausible simplifying assumptions 

placed by 

Ku 
(C) 

( S CH(HSO)P+\ £ A _ 

(15') 

where the summations in each case are over all of the isotopic species. 
This remains equivalent to (14) if we adopt the convention 

S OH(HjO)P+ 

OH+ + OD+ = T=T- T-TTn (16') 
2 a<HiO)3V/? / 2 0(HiO)Ĵ  

yield quite different limiting forms for the dis­
sociation constant ratio. 

1. The Gross-Butler Formulation.—Equation 
25 leads directly to this formulation if one assumes 
that the ionization constants expressed in the form 
of K'H(O) and K'o(n) are independent of medium 
and so can be replaced by the experimental values 
Kn and KD, respectively. This assumption gives 

^ H = 1 - n + nt'KKn/K-p) 
KD (1 - n + ne')3 

The problem of «' remains. A reasonable extension 
of the above ideality assumption suggests that the 
proper value for e'~6 would be 18.02, the Kingerley 
and LaMer11 value for the equilibrium constant 
L' of the exchange reaction 

(2G) 

2DCl(D2O) + H20(pure) ; 2HCl(H2O) + D20(pure) 

This of course implies that free energies of transfer 
can be neglected entirely. Actually, Purlee con­
cluded that the value 11 fits the data better than 
does 18, a result which suggests that a complete 
neglect of free energies for transfer is probably not 
justified. I t is also probable that the free energy 
of transfer will depend on the anion involved. This 
if true would cause e' to vary slightly from one 
acid molecule to another. 

2. The Linear Formulation for Unspecified 
Solvation.—This follows from eq. 24 if we assume 
that the constants Kiiin) and Kr>(ni of eq. 17 can 
be replaced by the experimental values for the pure 
solvents, Ku and KD. Then 

Kn = 1 - « + nelKn/K-p) 
Ku 1 — n + ne 

(27) 

Even though the denominator here is similar to the 
Q'(w) function of equation 7, it does not follow that 
e must be equal to L'~'^ where L' is again the 
Kingerley and LaMer equilibrium constant. Here 
too, as above, worries about neglect of free energy 
of transfer remain. A more serious difficulty is 
that this equivalence only follows if one treats 
the acidic cation as if it were non-solvated. Since 
the unspecified solvation equations must hold for 
any degree of solvation,16 there can be no unique 
link between e and V. For both reasons, it is 
necessary to treat t as a parameter. It will be 
shown later that for this formulation a value of 
e = 0.45 gives a good fit to the data. 

3. Medium Effect Formulation.—A particularly 
extreme position to adopt is to assume that the 
variations in K are due solely to medium effects, 
i.e., to changes in the standard state for the ioni­
zation process. This is equivalent to postulating 
that Kii(n) = Kr>(n) for all values of n. We also 
need some assumption for the variation of KHW 
with the medium. An obvious assumption is that 

AF«(n) = (1 - Jt)AfO(HsO) + NAF"(D2O) (28) 

which leads to the relation 

&, - (MT 
Substituting into equation 24 gives17 

(17) The same result can be obtained from equation 25, but it is 
here necessary to make the additional assumption that «' = 1. This 
is altogether reasonable for this model implying as it does that the free 
energy of exchange between the acid cation species and the solvent is 
zero. 
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*5 (S)- (30) 

The complete neglect of exchange fractionation 
that leads to equation 30 is almost certainly too 
extreme, but the same can be said about the neglect 
of free energy of transfer implicit in the earlier 
two formulations. 

4. Superposition of Exchange and Transfer.— 
There are evidently a large number of ways to com­
bine contributions from terms of these two sorts. 
As one typical combination let us assume, not that 
Kmn) = -ffD(n), but rather that KHCU) varies only 
from its value KH in water to some other value 
-KH(D) in DjO, the free energy change as a function 
of medium composition following an equation 
analogous to (28). A similar equation would hold 
for KT>(U). This gives as the analog to (29) 

^ L . ( ^ H _ Y ( 2 9 0 

Applying this to the case of unspecified solvation, 
and hence using equation 21 for KHW/KD (n>, 
(assumed to hold at n = 1), we arrive at 

_£H_ 
-STH(D) (i)"< £ ¥>_ 1)» 

AgHV(I - n)y>— 
\KDJ (1 - *)«-" 

(31) 

which, combined with equation 20 yields 
Kn (KnV 1 - n + n<p / A " •) 

+ «<• <i-«) / 

If there is no isotopic fractionation, e = <p = 1, 
so that (31) reduces to (30). At the other limit, 
where there is no free energy of transfer, it reduces 
to (27). Actually, the general equation 31 (and 
also the similar generalization which can be de­
rived for specific mono-solvation) is difficult to 
work with because of our lack of knowledge about 
the fractionation factors. If it can be assumed that 
the contribution from exchange is small, one might 
reasonably replace (31) by the approximation 

s - ( g r <*» 
where the empirical parameter 7 is presumably 
not very different from unity. 

I t is quite probable that the actual behavior 
does result from some superposition of this general 
sort. However, since it is somewhat doubtful 
a priori whether the experimental data will permit 
the detailed analysis implied by this treatment, 
the useful question to ask is how well each of the 
limiting forms fits the experimental data and 
whether they differ sufficiently among themselves 
to make any postulated superposition amenable to 
experimental verification. 

Comparison with Experiment.—The available 
experimental data have been reviewed by Purlee.8 

The reactions may conveniently be ordered in 
several groups, according to the magnitude of 
KH/KD (or kv/kn for kinetic data). The cases in 
which equilibrium constants have been measured 
are limited, but considerably more data are avail­
able from kinetic studies of acid catalyzed reactions. 
On the assumption that these reactions involve 
a preliminary acid-base equilibrium, ADAH is 
equivalent to KH/KX>. 

Fig. 2.—Comparison of limiting formulations with data 
for ionization of hydroquinone: "linear,"—•: Gross-Butler, 
— • —; "medium effect" (7 = 1), . 

As noted briefly above, Purlee used a value of 
11.0 for e'~6 in his equivalent of equation 26, 
and we have retained this value in the Gross-
Butler computations. In the linear formulation, 
equation 27, we use as a "best" value e = 0.45. 
The simple medium effect formulation, equation 
30, has no adjustable parameter. 

Figure 2 shows KnIKn vs. n for the ionization 
constant of hydroquinone, as measured by Rule 
and LaMer.18 This plot is typical of other acid 
ionization constants for which KH/KD is in the 
range 3-4 such as the ionization of acetic,19 ben­
zoic18 and formic acids. In all these cases there is 
little to choose between the Gross-Butler and the 
linear formulations. The simple medium effect 
plot fits almost as well. 

Figure 3 shows a similar plot derived from kinetic 
data for the acid catalyzed bromination of acetone.20 

Here the linear plot fits well and the Gross-Butler 
slightly less well. The simple medium effect plot 
is less satisfactory, but an excellent fit can be ob­
tained (not shown in figure) if one uses 7 = 1.4 
in equation 32. Similar behavior is shown by 
other kinetic data with kn/kn in the range 2-3, 
e.g., hydrolysis of ethyl orthoformate,21 hydrolysis 
of several epoxides22 and hydrolysis of acetal.6 

Figure 4 shows a comparison of the Gross-
Butler and linear formulations for the acid-cata­
lyzed hydrolysis of methyl acetate.7 Here, with 

(18) C. K. Rule and V. K. LaMer, T H I S JOURNAL, 60, 1975 (1938). 
(19) V. K. LaMer and J. P. Chittum, ibid., 58, 1642 (1936). 
(20) O. Reitz, Z. physik. Chem., 179A, 119 (1937). 
(21) E. Brescia and V. K. LaMer, T H I S JOURNAL, 60, 1963 (1938). 
(22) J. G. Pritchard and F . A. Long, ibid., 78, 6008 (1956). 
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Fig. 3.—Comparisons with data for bromination of acetone; 
curves identified as in Fig. 2. 

Fig. 4.—Hydrolysis of methyl acetate: Gross-Butler, 
— • — • —; linear —-. 

a kx>/kn value as small as 1.6, the two formulations 
diverge sufficiently to allow a choice to be made 
between them. Clearly the linear formulation 
allows the bet ter fit. This is also t rue for the hy­
drolysis of ethyl formate.7 The medium effect 
formulation of equation 30 gives a relatively poor 
fit to these data , the actual curve for methyl acetate 
being virtually identical to t ha t for the Gross-
Butler formulation. An excellent fit is, however, 
obtained by using equation 32 with y = 1.4. 

In Fig. 5 data are plotted for the acid catalyzed 
hydrolysis of methyl-1-cyclopentene and 2-methyl-
2-butene,23 for bo th of which £ D / £ H I S not far from 
unity (0.8-1.2). In these cases the curvatures 
of the plots for the Gross-Butler and linear formu­
lations are quite different and yield different ex­
trapolated values. Although the two curves for 
each of the two alkenes are qualitatively dissimilar, 
the entire spread of the da t a is in both cases 
such as to preclude a clear decision as to which 
gives the bet ter fit. The simple medium effect 
formulation is equally good, its plot (not shown in 

(23) E. L. Purlee and R. W. Taft, Jr., T H I S JOURNAL, 78, 5807 
(1956). 

Fig. 5.—Hydration of olefins; curves identified as in Fig. 4. 

Fig. 6.—Mutarotation of glucose; curves as in Fig. 2. 

this fig.) almost coinciding with the "linear" 
plot. 

The apparent maxima in the plots for these two 
examples of olefin hydration, if real, might be taken 
as evidence for the validity of the Gross-Butler 
formulation since both the unspecified solvation 
and medium effect formulations give straight lines 
of zero slope when KR/KD = 1. T h a t such a 
conclusion would not be justified follows directly 
from equation 31, which represents a superposition 
of these two formulations. This equation leads 
to the conclusion t ha t even with K-R/K-D — 1, 
the curve for KB./KU may pass through either a 
maximum or a minimum, depending only on 
which of the two fractionation factors, e or <p, 
deviates more from unity. 

The mutarota t ion of glucose,24 the da ta for which 
are plotted in Fig. 6, is exceptional among acid 
catalyzed reactions in t ha t i ts kn/kn value is 
considerably less than unity. The Gross-Butler 
plot fits very poorly. T h a t of the linear formula­
tion does much better, and the simple medium 

(24) W. H. Hamill and V. K. LaMer, J. Chem. Phys., 4, 395 (1936). 
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effect formulation fits best of all.26 Purlee has 
taken the large deviation from the Gross-Butler 
plot as evidence that there is no acid-base pre-
equilibrium in this reaction. Since a preequilib-
rium is in fact indicated by several lines of evi­
dence,26'27 we believe that this lack of agreement 
is another illustration of the inadequacy of the 
Gross-Butler formulation. 

I t is perhaps worth noting that when K-R/KT> 

(or kr>/kn) is much smaller than unity there may be 
a possibility of distinguishing experimentally be­
tween the formulations for unspecified solvation 
and for the medium effect. In this region the for­
mer exhibits the typical downward concavity of 
Fig. Ib. Plots for the latter would be slightly con­
cave upwards. I t is doubtful, however, whether 
suitable test reactions could be easily found. 

The two formulations based on neglect of free 
energy of transfer yield equations of identical 
form for base catalysis. This arises in the Gross-
Butler treatment since O H - unlike H3O+ has only 
a single exchangeable proton. The "unspecified 
solvation" treatment is less restrictive in that it 
allows the same equation to be derived without 
assumptions about the degree of solvation and sol­
vent polymerization. The medium effect formula­
tion is independent of whether the catalysis is acid 
or base and in general seems to give for base 
catalysis the same sort of agreement as noted in 
the preceding discussions of acid catalysis. 

(25) Purlee8 has noted that ka for this reaction seems to be a 
weighted mean of &H and kx> (arithmetic, rather than geometric as re­
quired by our equation 28) but his interpretation is quite different from 
ours. 

(26) L. P. Hammett, "Physical Organic Chemistry," McGraw-Hill 
Book Co., New York, N. Y., 1940, p. 337. 

(27) B. C. Challis, F . A. Long and Y. Pocker, / . Chem. Soc, 4679 
(1957). 

Conclusions.—The comparison of experiment 
with the various limiting formulations makes it 
evident that there is no case to be made for the 
superiority of the Gross-Butler equation. In 
fact if one chooses to neglect medium effects, the 
unspecified solvation treatment actually leads to 
distinctly better agreement with the data. I t of 
course follows that these mixed solvent studies do 
not in themselves give any information about the 
state of solvation of the proton in solution, a con­
clusion which is only reinforced by the fact that 
complete neglect of medium effects is probably 
not justified. 

Since the medium effect formulation can by 
itself give almost as good agreement with the data 
as does either of the other two limiting equations, 
one can be sure that a properly chosen superposi­
tion of a medium effect on the linear formulation 
(and presumably also on the Gross-Butler formula­
tion) will give entirely satisfactory fits in all 
cases. However, because of the small differences 
among the various limiting forms themselves, 
this is not a very enlightening conclusion. 

In view of the uncertainty about the relative 
importance of medium and exchange effects for 
these systems, it is very doubtful whether studies 
of acid or base catalysis in mixed H2O-D2O media 
can yield useful information on the mechanisms 
of reactions. Actually, Gold10 reached the same 
conclusion on very different grounds, by showing 
that, even neglecting medium effects and assum­
ing specific monohydration of the proton, a 
plausible case could be made for expecting pre-
equilibrium and slow proton transfer mecha­
nisms to show very similar behavior in the mixed 
solvents. 


